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Abstract. We accurately reconstruct three-dimensional (3-D) refractive index (RI) distributions from highly
ill-posed two-dimensional (2-D) measurements using a deep neural network (DNN). Strong distortions are
introduced on reconstructions obtained by the Wolf transform inversion method due to the ill-posed
measurements acquired from the limited numerical apertures (NAs) of the optical system. Despite the
recent success of DNNs in solving ill-posed inverse problems, the application to 3-D optical imaging is
particularly challenging due to the lack of the ground truth. We overcome this limitation by generating
digital phantoms that serve as samples for the discrete dipole approximation (DDA) to generate multiple
2-D projection maps for a limited range of illumination angles. The presented samples are red blood cells
(RBCs), which are highly affected by the ill-posed problems due to their morphology. The trained network
using synthetic measurements from the digital phantoms successfully eliminates the introduced distortions.
Most importantly, we obtain high fidelity reconstructions from experimentally recorded projections of real RBC
sample using the network that was trained on digitally generated RBC phantoms. Finally, we confirm the
reconstruction accuracy using the DDA to calculate the 2-D projections of the 3-D reconstructions and
compare them to the experimentally recorded projections.
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1 Introduction
When we look at a three-dimensional (3-D) object in a conven-
tional microscopy, we can only see a two-dimensional (2-D)
projection at one time. Therefore, we need more information in
order to extract the 3-D shape from the 2-D measurement. If we
make a holographic measurement where we record both ampli-
tude and phase, measuring at different z planes is equivalent to
a single measurement followed by the digital propagation to
multiple planes. Therefore, with coherent detection, a z-scan
does not provide extra information compared to the single 2-D
recording. Another dimension that can be exploited is the illu-
mination angle θ. The measurements in the x, y, θ dimensions
can be converted to the 3-D spatial domain by defining the
physical relationship between the illuminating fields at the dif-
ferent angles and the corresponding measurements. However,
most of the time, the 2-D measurements are incomplete due

to the limited numerical apertures (NAs) of the optics, resulting
in an inversion process that is highly ill-posed.

Optical diffraction tomography (ODT) is a 3-D imaging
method that utilizes multiple 2-D measurements acquired by
changing the angle of illumination. The contrast mechanism in
ODT is endogenous index. It, therefore, does not require exter-
nal labeling. ODT provides 3-D refractive index (RI) distribu-
tions1 that contain morphological and biochemical information,
which have been widely used to study various biological sam-
ples, which are summarized in recent review papers.2–5 Under
the assumption of weak scattering, multiple 2-D measurements
in ðx; y; θÞ can be directly inverted to yield the 3-D RI informa-
tion in ðx; y; zÞ using the Wolf transform,6 which is the transfor-
mation that maps the spatial frequencies of the 2-D spectrum of
the projections to the spatial frequencies of the 3-D spectrum
of the object. However, direct inversion reconstruction methods
based on the Wolf transform suffer from the missing cone
problem—a consequence of the missing spatial frequencies that
are not accessible due to the limited NAs of the optics.7*Address all correspondence to Joowon Lim, E-mail: limjoowon@gmail.com
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The missing cone problem has been intensively investigated
due to its importance.7,8 Previous approaches are model-based
iterative reconstruction (MBIR) schemes, which exploit regula-
rizations based on our prior knowledge, such as non-negativity
or sparsity constraints. In other words, MBIR schemes find a
solution that is not only consistent with the measurements
but also sparse in the regularization domain. The choice of regu-
larization is critical. However, it requires extensive understand-
ing of the characteristics of the forward models, including the
degree of ill-posedness intertwined with the characteristics of
the samples. This makes the problem challenging.

Recently, deep neural networks (DNNs) have been successful
in various optical applications, such as enhancement of the trans-
verse resolution,9 phase retrieval from intensity measurements,10,11

digital staining,12,13 classification/segmentation based on holo-
graphic/tomographic measurements,14–16 and others.10,17,18 There
are some previous demonstrations of the benefits of applying
DNNs to the reconstruction of RI values in ODT.19–21 As far
as we know, nobody has succeeded before in using DNNs to re-
construct arbitrary 3-D RI distributions from limited angle mea-
surements taking diffraction and multiple scattering into account.

In this paper, we describe a method based on DNNs to solve
the long-standing missing cone problem and demonstrate it us-
ing red blood cell (RBC) samples. Despite the potential capacity
of DNNs, the lack of the ground truth prevents us from applying
DNNs on the ODT reconstruction, unlike other DNN optical
imaging applications, such as digital staining or phase retrieval
where we can access the target images. Our approach relies on
the formation of digital phantoms followed by accurate digital
models, which provide the 2-D measurements. The digital 2-D

projections are used to form a rough 3-D image of the object
using the Wolf transform under the Rytov approximation.6

By training a DNN with the pairs of images from the Wolf trans-
form and the corresponding digital phantoms, we can learn the
distortions introduced due to the incomplete measurements in a
data-driven way.

2 Main Idea
We demonstrate the method by using RBC samples that are
highly affected by the missing cone problem. The shape of
RBCs is flat and biconcave showing narrow dimple regions at
the center, which requires high-frequency components along
the optical axis to fully resolve the structures.22,23 In Fig. 1(a),
we observe that cross sections of the Rytov reconstruction are
underestimated and elongated along the z axis when compared
with the corresponding sections of the ground truth. The k-space
representation of the Rytov reconstruction can be considered as
the low-pass filtered version of the k-space of the ground truth
under the weak scattering assumption. Looking at the k-space of
the ground truth, the frequency components are more broadly
distributed in the kz axis compared to ones in the ky axis since
the sample is broad in the y axis but has the narrow biconcave
shape in the z axis. While high-frequency components are re-
quired to fully resolve the thin structure, most of them are lost
because they are inaccessible due to the limited NAs as indicated
by the red triangles. This results in the high distortions in the final
Rytov reconstruction. In general, Rytov reconstructions of RBCs
show holes in the middle making it hard to retrieve meaningful
information, such as cell volume, surface, and RI values.
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Fig. 1 The missing cone problem and overall scheme of the main idea. (a) Demonstration of the
missing cone problem for a single RBC. The left two columns show the Rytov reconstruction and
the right two columns show the ground truth. The first row displays the scattering potential, which
can be converted to RI distributions, and the second row displays the k -spaces corresponding to
the first row. (b) Overall scheme of the network.
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A DNN can be trained to recover those missing high
frequencies, which are especially important for forming
tomograms of RBCs. The network reconstructs the original
RBC with the Rytov reconstruction as the initial condition
in the training of the DNN, as shown in Fig. 1(b). We refer
to the network as TomoNet throughout this paper. The input
to the network is the Rytov reconstruction of an RBC and
the output is the enhanced image of the same RBC. The input
is also relayed directly to the output of the network where it
is summed with the correction calculated by the DNN.
Therefore, the network learns to extract the difference be-
tween the input and the output. In other words, given the
low-pass filtered input, the network synthesizes the missing
high-pass filtered information using data-driven features from
a large number of examples. By combining the low-pass fil-
tered input with the high-pass synthesized output from the
network, we can achieve the full resolutions in the transverse
and axial planes.

For training, we digitally generated many RBCs that are dif-
ferent in shape and RI value using the RBC model, as shown in
Fig. 2(a).24 For detailed information of the generation of differ-
ent RBCs, we refer interested readers to Appendix A. Then,
each RBC served as a sample for DDA simulations to generate
accurate synthetic measurements, as shown in Fig. 2(b).25,26 A
total of 40 uniformly spaced measurements were acquired by
scanning on a circular pattern while maintaining a fixed illumi-
nation angle of 36 deg with respect to the z axis. The RBC phan-
toms generated using the model [Fig. 2(a)] originally lie in the
xy plane. We implemented the various orientations of RBCs that
can occur by randomly rotating each sample in the yz and xy
planes. The DDA method was then used to calculate the 2-D
projections of each 3-D phantom for each of the 40 illumination
angles [Fig. 2(c)]. These calculations were used to form 3-D
reconstructions using the Rytov method, which served as the
input to the network.6 Each Rytov reconstruction was paired
with the corresponding synthetic RBC that was used to generate

(c)

(a) (b)

(d)

Fig. 2 Dataset generation. (a) RBC model parameters. (b) Synthetic measurements generation
using the DDA. (c) Generation of synthetic measurements for two RBCs: one RBC lying in the xy
plane and the same RBC but randomly rotated. The pairs of the Rytov reconstructions and the
ground truth RBCs are presented. The scale represents the normalized RI, which is calculated by
dividing the RI values of a sample by the RI of the background. (d) Schematic description of the
z-shift variant property of the Rytov measurement.
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the calculations. Figure 2(c) shows two example pairs, one with-
out rotation and the other with rotation.

For each RBC pair, we want to augment the dataset by shift-
ing each example in all the axes. To do so, it is important to
consider the shift properties of the Rytov reconstruction along
each axis. We start from the integral solution to the Helmholtz
equation:

UsðrÞ ¼
Z
V
Fðr0ÞUðr0ÞGðr − r0Þdr0; (1)

where FðrÞ ¼ k2∕4π½nðrÞ2∕n20 − 1� is the scattering potential of
a sample whose RI distributions are nðrÞ when immersed in a
medium whose RI is n0, given a wavenumber for the
wavelength λ in vacuum, k ¼ 2πn0∕λ. Here Gðr − r0Þ ¼
e1ikjr−r0 j∕jr − r0j is the Green’s function of the 3-D Helmholtz
equation. The UiðrÞ and UðrÞ are the incident and total electric
fields, respectively, and the UsðrÞ is the scattered electric field,
UsðrÞ ¼ UðrÞ −UiðrÞ. The term Us, on the left-hand side, can
be measured at the image plane, as shown in Fig. 2(d). It is in-
tuitive to see that moving the sample in the xy plane results in
the same shift in the plane of the measurement of the scattered
field. When the sample is translated in z, however, the measured
scattered field will be the propagated version of the original un-
shifted measurement. Assuming that the sample is weakly scat-
tering, the Rytov approximation uses the phase of the field itself,
and Eq. (1) can be rewritten as follows:

Us−RytovðrÞ ¼ UiðrÞ log
UðrÞ
UiðrÞ

¼
Z
V
Fðr0ÞUiðr0ÞGðr − r0Þdr0:

(2)

The left term of Eq. (1),UðrÞ−UiðrÞ¼ ½elogUðrÞ∕UiðrÞ−1�UiðrÞ,
is replaced with the first Taylor expansion of it,
UiðrÞ log UðrÞ∕UiðrÞ. It, therefore, loses the propagation
property of the scattered field. We refer this term as Us−Rytov.
In other words, we must recalculate Uz−shift

s−Rytov when an object
is shifted in the z axis and the result of this calculation is differ-
ent than distally propagating the field Us−Rytov.

Taking these properties into consideration, we augmented the
set of training examples by generalizing shifted versions of the
original pairs. For the shift in the xy plane, we added an xy-
shifted version of each pair in addition to the original pair (with-
out any shift). The shift was randomly selected during training.
For the shift in the z axis, after generating the 40 projections
for an RBC centered at z ¼ 0, we digitally propagated the
simulated measurements, U and Ui, to four different z planes
(−2Δz, −Δz, þΔz, and þ2Δz) and calculated the correspond-
ing Us−Rytov values at each plane. This was followed by their
Rytov reconstructions to obtain examples of RBCs shifted along
the z axis. In this work, Δz was set to 122 nm, which corre-
sponds to one pixel of reconstruction grid. Rytov reconstruc-
tions were paired with the shifted RBCs in the z axis.

3 Method

3.1 Network Training

We trained a U-Net-type DNN in the regression manner using
the following weighted l2-norm as the cost function:27,28

Errorðxrecon; xtrueÞ ¼
kxrecon − xtruek22

kxtruek22
; (3)

where xrecon is the output from the network given xRytov, and
xtrue is calculated from the ground truth RI contrast. Here, x rep-
resents the RI contrast multiplied by a scalar value, which is
calculated as cðn − n0Þ, where n represents sample RI distribu-
tions and n0 is the RI of medium. The scalar c was introduced
for normalization of values; c can be either 40 for xRytov or 20
for xtrue. Negative components of input and output of the net-
work were discarded. We implemented the network using
PyTorch (1.2.0) and compute unified device architecture toolkit
(10.0) on a desktop computer (Intel Core i7-6700 CPU,
3.4 GHz, 32 GB RAM) with a graphic processing unit (GPU,
GeForce GTX 1070). The network was trained using the Adam
optimizer with the learning rate of 1 × 10−4, and it decayed half
after every 10 epochs.29 The mini-batch size was 8 and the total
number of epoch was 50.

Figure 3 describes the network structure. It is very similar to
the U-Net proposed in Refs. 27 and 28, except for slight
modifications.30,31 The input is skip-connected and summed
to the output of the network. Therefore, the network learns
the residual difference between the Rytov reconstruction and
the ground truth.28 All biases in the convolutional layers were
set to zero and fixed. Zeros were padded for convolution layers
of which kernel sizes are bigger than 1 so that the dimensions
stay equal before and after the convolutions. The negative slope
of leaky rectified linear unit (RELU) was set to 0.01. For the
normalization layer, affine transform was turned off. For the
transpose convolutional layers, the kernel size was set to 6 × 6 ×
6 with the zero padding of 2 × 2 × 2 and the stride of 2 × 2 × 2.

3.2 Experiment

The optical setup is described in Fig. 4.32 It includes a diode
pumped solid state 532 nm laser. The laser beam was first spa-
tially filtered using a pinhole spatial filter. A beamsplitter was
used to split the input beam into a sample beam and a reference
beam. The sample beam was directed onto the sample at differ-
ent angles of incidence using a reflective liquid crystal on silicon
spatial light modulator (SLM) (Holoeye) with a pixel size and
resolution of 1080 × 1920 pixels. Different illumination angles
were obtained by projecting blazed gratings on the SLM. In the
experiment presented here, a blazed grating with a period of
25 pixels was rotated a full 360 deg. Two 4F systems between
the SLM and the sample permitted filtering of higher orders re-
flected from the SLM (due to limited fill factor and efficiency of
the device) as well as magnification of the SLM projections onto
the sample. Using a 100× oil immersion objective lens with NA
1.4 (Olympus), the incident angle on the sample corresponding
to the grating was 36 deg. The magnification of the illumination
side was defined by the 4F systems we used before the sample.
A third 4F system after the sample includes a 100× oil immer-
sion objective lens with NA 1.45 (Olympus). The sample and
reference beams were collected on a second beamsplitter and
projected onto a scientific CMOS (sCMOS) camera (Neo,
Andor) with a pixel size and resolution of 2150 × 2650 pixels.

Blood sampling was performed by terminal intracardiac
puncture on wild-type Balb/cByJ adult mice, in agreement with
the Swiss legislation on animal experimentation (authorization
number VD3290). RBCs were then isolated from blood plasma
by centrifuging using Eppendorf-Centrifuge 5418 at 400 rpm
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for 3 min. RBCs were then fixed using glutaraldehyde with con-
centration of 0.25% in phosphate-buffered saline (PBS) fol-
lowed by centrifuging for 1 min and washing three times with
PBS to remove any fixation reagents traces. To ensure strong
adhesion between the RBC and the coverslip, coverslip was
coated with 0.1% poly L-lysine diluted in PBS with molecular
weight ranging between 1000 and 5000 gm∕mol.

4 Results

4.1 Synthetic Data

Results obtained with the TomoNet are displayed in Fig. 5 for
two different RBCs. Here, we only present centered RBCs

without shifts in the xy plane. The first row shows RI recon-
structions of Rytov, TomoNet, and the ground truth. The second
row displays the difference map from the ground truth
(reconstruction – the ground truth). In other words, blue regions
in the difference map display underestimated parts and yellow
regions show elongated regions. As expected, the Rytov recon-
structions underestimate the RI values and elongate the RI dis-
tributions along the optical axis. Especially, the central dimple
region of the RBC is significantly deteriorated. This is because
the dimple region is thin and requires high frequencies for
its reconstruction. By contrast, TomoNet shows excellent
reconstruction results since it estimates accurately the values
of these high frequencies from the data in the training set. In

Fig. 4 Schematic for the experimental setup. M, mirror; L, lens; OBJ, objective lens; and BS,
beamsplitter.

Fig. 3 Schematic description of the network structure. Here c represents the number of channels
written at each block. WN, weight normalization; LRLU, leaky RELU; and LN, layer normalization.
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other words, the TomoNet implements super-resolution for
3-D samples revealing spatial details beyond the classical
resolution limit. We quantitatively assessed the accuracy of
the TomoNet over the Rytov reconstruction by calculating
the following metric:

errorðΔnrecon;ΔntrueÞ ¼
kΔnrecon − Δntruek22

kΔntruek22
; (4)

where Δnrecon is the reconstructed RI contrast and Δntrue is the
ground truth RI contrast. Here, Δn represents the RI contrast,
which is defined as (n − n0), where n represents the sample RI
distributions and n0 is the RI of medium. We discarded the
negative values when calculating the error metric. The mean
error values over all test RBCs are 0.5929 for the Rytov
method and 0.0084 for the TomoNet, which confirms the im-
proved performance of the network. The trained network ac-
curately reconstructs RBCs and it does so in less than 10 ms on
a GPU (GeForce GTX 1070).

4.2 Experimental Data

We applied the network trained with digital phantoms to the
Rytov reconstruction of a mouse RBC formed from experimen-
tal measurements. In the experiment, the samples were circu-
larly scanned at the illumination angle of 36 deg in 9-deg
steps resulting in 40 measurements, matching the parameters
we used to generate the digital training data. As shown in
Fig. 6, the Rytov reconstructions using the measurements show
severe distortions, especially at the dimple region as we also
observed in the synthetic data. With the Rytov reconstruction
as its input, the TomoNet reconstructs RI tomograms without
those artifacts resulting in the biconcave morphology. We veri-
fied the great improvement in the quality of the reconstructions
visible in Fig. 6, by using a quantitative method33 to evaluate the
reconstruction accuracy of 3-D objects when the ground truth is
not accessible. This was possible by generating semisynthetic
measurements.

As described in Fig. 7(a), following the reconstruction of the
RI distributions from the experimental measurements, we gen-
erated semisynthetic 2-D projections using an accurate forward
model such as the DDA at each illumination angle. By compar-
ing the digital projections with the corresponding 2-D experi-
mental measurements, the difference between them reflects
how close the 3-D reconstruction is to the ground truth. It is
noteworthy that we did not use the forward model involved
in the reconstruction to generate the digital projections to be fair.
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Fig. 5 Reconstruction results using two examples from the test
datasets. (a) Results for an RBC without rotation and (b) results
for another RBC with rotation. The scale represents the normal-
ized RI, which is calculated by dividing the RI values of a sample
with the RI of background.
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Fig. 6 Reconstruction of mouse RBC from experimental data using the network trained on syn-
thetic data. The images to the left show the Rytov reconstruction, which is the input to the network.
The images to the right show the results of the TomoNet.
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Figure 7(a) shows two examples of phase maps from digital
projections. For each digital projection, we calculated the pro-
jection error map, the difference in phase information between
experimental and simulated measurements, along with the mean
projection error map over all angles. Figure 7(b) displays two
randomly selected projection error maps as well as the mean
projection error maps for the Rytov and the TomoNet. In the
case of Rytov, we can clearly see the mismatch between exper-
imental and digital projections in the mean projection error map.
By contrast, the mean projection error map of TomoNet shows
excellent consistency. We further quantitatively confirmed the
improvement in performance of TomoNet over Rytov by calcu-
lating the metric,

P
L
l¼1 kρlexp − ρlsynk2∕N, where L is the total

number of angles, N is the total number of pixels, and ρexp and
ρsyn are the phase maps from experimental and semisynthetic
measurements, respectively. As shown in Fig. 7(b), the average
of the metric shows twofold improvement of TomoNet over the
Rytov method.

5 Conclusion
We presented a DNN approach for reconstructing tomograms of
RBCs with greatly improved image quality and super-resolution
capability, especially enhancing the axial resolution. We digi-
tally generated various RBCs and used them to generate syn-
thetic measurements using the DDA to overcome the lack of
the ground truth. The network trained on the synthetic data ac-
curately reconstructs RI distributions of RBCs resolving the
problems caused by the missing cone problem. We applied
the trained network on experimental data to utilize extracted

features from the synthetic datasets. Despite the lack of the
ground truth for the experimental result, we further validated
the result of the network using semisynthetic measurements,
and it confirmed the great improvement.

In this work, we focused on one specific cell type, RBCs,
since it is relatively easy to model them. More importantly,
RBCs are highly distorted by the missing cone problem, which
prevents us from retrieving meaningful information for various
applications. However, we believe that the proposed scheme can
be further extended to other types of sample by carefully design-
ing phantoms to statistically capture information in the gener-
ated dataset.

6 Appendix A: Dataset Generation
The shape of the surface of an RBC can be modeled by the fol-
lowing equation:

ρ4 þ 2Sρ2z2 þ z4 þ Pρ2 þQz2 þ R ¼ 0; (5)

where ρ is the radius in cylindrical coordinates (ρ2 ¼ x2 þ y2)
and S, P, Q, and R are the parameters derived from d, h, b, and
c shown in Fig. 2(a).24 To generate various RBCs, the d, h, and
b values in microns were randomly selected from normal
Gaussian distributions whose mean values were 7.65, 2.84,
and 1.44 and standard deviations were 0.67, 0.46, and 0.47.
c∕d and the normalized RI values, ðn − n0Þ∕n0, were sampled
from uniform distributions whose ranges were (0.56, 0.76) for c
and (1.0355, 1.596) for the normalized RI.24 To avoid nonreal-
istic shapes, several criteria were applied to limit the parameter

(a)

(b)

Fig. 7 Validation of the experimental result using semisynthetic measurements. (a) Overall
scheme of semisynthetic measurement generation using DDA. (b) Phase difference maps for
two randomly selected angles and the average maps for all angles. The color bars are in radians.
Calculation of projection errors in retrieved phase information from experimental and semisyn-
thetic measurements.
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values in the following ranges: h < 0.95 × d∕2 and b ≤ h. In
addition, we limited the derived geometrical parameters such
as cell volume (V μm3), surface (S μm2), and sphericity index
(SI), 6

ffiffiffi
π

p
V∕S3∕2, to fall within the normal ranges:

66<V<130, 98<S<162, and 0.494<SI<0.914.24 The cell
surface was calculated using the equation, πd½d∕2þ 2h×
ðsinh−1eÞ∕e�, where e ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9d2 − 4h2

p
∕5h.34 Finally, RBC

shapes were downsampled with a factor, 7.65/5.8, since the
mean diameter of mouse RBCs is 5.8 μm, compared to the
7.65 μm for humans.35 A total of 100 different RBCs were gen-
erated and each of them was randomly rotated in the yz plane
(uniform distribution: [0, π∕6]) and the xy plane (uniform dis-
tribution: [0, 2π]) resulting in 200 different RBCs (100 without
rotation and 100 with rotation).

To generate synthetic measurements using the DDA, each
RBC was illuminated at the incident angle of 36 deg for 40 an-
gles, which were uniformly distributed on a circle. The illumi-
nation wavelength λ was 396 nm and the size of each dipole was
set to λ∕12 ¼ 33 nm. The background medium in the simula-
tion was air and the sample RI was set to the normalized RI. For
2-D measurements, the size of the grid was 256 × 256 with a
pixel size of 99 nm. After that, the measurements were down-
sampled by cropping in k-space resulting in a pixel size of
122 nm. The original phantom defined using dipoles interpo-
lated to a sampling grid that matched the pixel size of the mea-
surements.

Measurements for 200 randomly generated RBCs were dig-
itally refocused to five different planes resulting in 1000 pairs.
Totally 800, 100, and 100 pairs were used for training, valida-
tion, and test, respectively. For the training and validation, we
doubled the datasets by adding the randomly shifted sets on top
of the original sets, resulting in 1600 and 200 pairs. The random
shift varied at every iteration. For the rotated RBCs, after gen-
erating the measurements, we reversely rotated the Rytov recon-
structions and the paired ground truth RBCs in the xy plane,
resulting in rotations only in the yz plane to simplify the train-
ing. For the experimental data, since we do not know the rota-
tion angle in the xy plane, we applied ellipsoidal fitting on a
binary mask generated by applying Otsu thresholding36 on
the maximum projection map of Rytov. By analyzing the short
and long axes, we extracted the orientation of the RBC. Since
the Rytov reconstruction is shift-invariant in the xy plane, we
simply interpolated in the xy plane for rotation.

7 Appendix B: Semisynthetic Simulation
The semisynthetic measurements were calculated using
reconstruction results acquired from Rytov and TomoNet as
samples for the DDA simulations. The pixel size of these recon-
structions was 122 nm. Since the size of dipole was set to
λ∕6n0 ¼ 67 nm, where λ ¼ 532 nm and n0 ¼ 1.334, the recon-
structions were interpolated to a grid, one pixel of which was
the size of a dipole. Then, we discretized the RI values
as roundðn∕n0 × 1000Þ∕1000, and the negative values were
discarded.
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